

THREE FUNDAMENTAL CHEMICAL LAWS

THREE FUNDAMENTAL CHEMICAL LAWS

1. Law of Conservation of Mass
2. Law of Definite Proportions
3. Law of Multiple Proportions

\#1 - LAW OF CONSERVATION OF MASS

Mass cannot be created or destroyed, it can only be rearranged or converted from one form to another

https://www.youtube.com/watch?v=2S6el1NBwiw

\#1 - LAW OF CONSERVATION OF MASS

-We convert mass into energy during nuclear chemical reactions.

- In normal chemical reactions we simply rearrange the atoms to bond in different combinations to make new molecules.

\#1 - LAW OF CONSERVATION OF MASS

 If heating 10 grams of CaCO_{3} produces 4.4 g of CO_{2} and 5.6 g of CaO , show that these observations are in agreement with the law of conservation of mass.$$
4.4 \mathrm{~g}+5.6 \mathrm{~g}=10 \mathrm{~g}
$$

\#1 - LAW OF CONSERVATION OF MASS

\#2 - LAW OF DEFINITE PROPORTIONS

- No matter how a molecule is made, it will always have the same elements in the same ratios.
- Example: No matter how you make it, $\mathrm{H}_{2} \mathrm{O}$ will always be $\underline{2}$ hydrogen: 1 oxygen

\#2 - LAW OF DEFINITE PROPORTIONS

10.000 g of water gives 1.119 g of hydrogen gas and 8.881 g of oxygen gas. Also 27.000 g of water produces 3.021 g hydrogen and 23.979 g oxygen. Show that this follows the law of definite proportions.
Show that each sample has the same ratios!

Sample \#1:

$\frac{1.119 \mathrm{~g} \mathrm{H}_{2} \mathrm{gas}}{10.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$	$=0.1119$
	$\times 100=$
	$11.19 \% \mathrm{H}$
$\frac{8.881 \mathrm{~g} \mathrm{O}_{2} \mathrm{gas}}{10.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$	$=0.8881$
	$\times 100=$
	$88.81 \% \mathrm{O}$

Sample \#2:

$\frac{3.021 \mathrm{~g} \mathrm{H}_{2} \text { gas }}{27.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}$	$=0.1119$
	$\times 100=11.19 \% \mathrm{H}$

$$
\begin{array}{ll}
\frac{23.979 \mathrm{~g} \mathrm{O}_{2}-\mathrm{gas}}{27.000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} & =0.8881 \\
& \times 100=88.81 \% \text { O }
\end{array}
$$

Same ratios! So it is water!

\#3 - LAW OF MULTIPLE PROPORTIONS

- Elements can combine in different ratios, but they must always be whole number ratios! We cannot have $1 / 2$ an atom! Or $1 / 4$ of an atom! Etc.
- Example: $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ - Not $\mathrm{NO}_{1.5}$

\#3 - LAW OF MULTIPLE PROPORTIONS

Which of the following pairs of compounds can be used to illustrate the "law of multiple proportions"?
a) $\mathrm{CH}_{4} \& \mathrm{CO}_{2}$ d) $\mathrm{H}_{2} \mathrm{O}$ \& HCl
b) NH_{4} \& $\mathrm{NH}_{4} \mathrm{Cl}$ e) ZnO_{2} \& ZnCl_{2}
(c) $\mathrm{SO}_{2} \& \mathrm{SO}_{3}$ f) $\mathrm{CO} \& \mathrm{CO}_{2}$

A LITTLE HISTORY BEHIND ALL THIS!

https://www.youtube.com/watch? $\mathrm{v=QiilyvzZBKT8}$

YOUTUBE LINK TO THIS PRESENTATION

 https://youtu.be/nq2zfSam4BM