

THREE FUNDAMENTAL CHEMICAL LAWS

THREE FUNDAMENTAL CHEMICAL LAWS

- 1. Law of Conservation of Mass
- 2. Law of Definite Proportions
- 3. Law of Multiple Proportions

Mass cannot be created or destroyed, it can only be rearranged or converted from one form to another

https://www.youtube.com/watch?v=2S6e11NBwiw

- •We convert mass into energy during <u>nuclear chemical reactions</u>.
- In <u>normal chemical reactions</u> we simply rearrange the atoms to bond in different combinations to make new molecules.

If heating 10 grams of CaCO₃ produces 4.4 g of CO₂ and 5.6 g of CaO, show that these observations are in agreement with the law of conservation of mass.

#2 – LAW OF DEFINITE PROPORTIONS

- •No matter how a molecule is made, it will always have the same elements in the same ratios.
- •Example: No matter how you make it, H₂O will always be <u>2</u> hydrogen:<u>1</u> oxygen

#2 – LAW OF DEFINITE PROPORTIONS

10.000 g of water gives 1.119 g of hydrogen gas and 8.881 g of oxygen gas. Also 27.000 g of water produces 3.021 g hydrogen and 23.979 g oxygen. Show that this follows the law of definite proportions.

Show that each sample has the same ratios!

Sample #1:		Sample #2:	
<u>1.119 g H₂ gas</u>	= 0.1119	<u>3.021 g H₂ gas</u>	= 0.1119
10.000 g H ₂ O	x 100 =	27.000 g H ₂ O	x 100 = 11.19% H
	11.1 9 % H		
<u>8.881 g O₂ gas</u> 10.000 g H ₂ O	= 0.8881 x 100 =	<u>23.979 g O₂ gas</u> 27.000 g H ₂ O	= 0.8881 x 100 = 88.81% O
	88.81% O	Same ratios! So it is water!	

#3 – LAW OF MULTIPLE PROPORTIONS

- •Elements can combine in different ratios, but they must always be whole number ratios! We cannot have ½ an atom! Or ¼ of an atom! Etc.
 - Example: NO, NO₂, N₂O
 - •<u>Not</u> NO_{1.5}

#3 – LAW OF MULTIPLE PROPORTIONS

Which of the following pairs of compounds can be used to illustrate the "law of multiple proportions"?

A LITTLE HISTORY BEHIND ALL THIS!

https://www.youtube.com/watch?v=QiiyvzZBKT8

YOUTUBE LINK TO THIS PRESENTATION

https://youtu.be/ng2zfSqm4BM